Từ trường và dòng điện Từ_trường

Dòng điện tích vừa sinh ra từ trường và chịu một lực do từ trường ngoài B tác dụng.

Từ trường do điện tích di chuyển và dòng điện sinh ra

Quy tắc bàn tay phải: một dòng đi theo hướng của mũi tên trắng sinh ra từ trường thể hiện bằng mũi tên đỏ.

Mọi điện tích di chuyển đều sinh ra từ trường. Các điện tích điểm chuyển động, như electron, sinh ra từ trường phức tạp phụ thuộc vào điện tích, vận tốc và gia tốc của hạt.[18]

Các đường sức từ tạo thành các đường tròn đồng tâm quanh dây dẫn điện hình trụ dọc theo chiều dài của dây. Hướng của từ trường được xác định theo quy tắc bàn tay phải (hình bên cạnh). Độ lớn của từ trường giảm dần theo khoảng cách đến dây dẫn. (Đối với một dây có chiều dài coi là vô hạn, độ lớn của từ trường giảm tỉ lệ nghịch với khoảng cách đến dây.)

Solenoid

Khi uốn dây dẫn điện thành cuộn dây solenoid khiến cho từ trường bên trong cuộn dây mạnh lên trong khi ở ngoài cuộn lại rất yếu. Một cuộn dây cuốn quanh một lõi sắt từ hoạt động như nam châm điện, sinh ra một từ trường mạnh và điều khiển được. Một nam châm điện hình trụ coi dài vô hạn có từ trường rất đồng đều bên trong cuộn dây trong khi từ trường ngoài lại không tồn tại. Nam châm điện hình trụ dài hữu hạn sinh ra từ trường có dạng giống với từ trường của một nam châm vĩnh cửu hình dáng đều, với độ lớn và cực từ xác định bởi hướng dòng điện chạy trong cuộn dây.

Từ trường sinh ra bởi dòng điện không đổi I {\displaystyle {I}} (luồng điện tích chảy đều đặn)[nb 11] miêu tả bởi định luật Biot–Savart:

B = μ 0 I 4 π ∫ d a y d ℓ × r ^ r 2 , {\displaystyle \mathbf {B} ={\frac {\mu _{0}I}{4\pi }}\int _{\mathrm {day} }{\frac {d{\boldsymbol {\ell }}\times \mathbf {\hat {r}} }{r^{2}}},}

với tích phân lấy trên toàn bộ chiều dài của dây, vectơ d chỉ theo hướng của dòng điện, μ0 là hằng số từ môi, r là khoảng cách giữa vị trí của d và vị trí cần tính độ lớn từ trường, và là vectơ đơn vị theo hướng của r.

Một cách hơi tổng quát hơn[19][nb 12] liên hệ dòng I {\displaystyle {I}} với trường Bđịnh luật Ampère:

∮ S ⁡ B ⋅ d l = μ 0 I e n c {\displaystyle \oint _{S}\mathbf {B} \cdot d\mathbf {l} =\mu _{0}I_{\mathrm {enc} }}

với tích phân đường trên một vòng bất kỳ, I {\displaystyle {I}} enc là dòng điện đi qua mặt giới hạn bởi vòng. Định luật Ampère luôn luôn đúng cho dòng điện ổn định và dùng để tính cho trường B có dạng đối xứng cao như dây dẫn dài vô hạn hay solenoid vô hạn.

Trong dạng sửa đổi để tính đến điện trường biến đổi theo thời gian, định luật Ampère là một trong bốn phương trình Maxwell mô tả điện động lực học cổ điển.

Lực lên điện tích chuyển động và dòng điện

Chuyển động của hạt tích điện trong từ trường với (A) không có lực tác dụng, (B) có thêm điện trường E, (C) có thêm lực độc lập khác F (như lực hấp dẫn), và (D) trong từ trường không đều grad H.

Lực lên điện tích chuyển động

Bài chi tiết: Lực Lorentz

Một hạt tích điện chuyển động trong từ trường B chịu một lực tỉ lệ với độ lớn của từ trường, và vận tốc của nó. Lực này luôn vuông góc với hướng từ trường và hướng nó chuyển động, và được gọi là lực Lorentz, cho bởi công thức

F = q v × B , {\displaystyle \mathbf {F} =q\mathbf {v} \times \mathbf {B} ,}

vớiFlực, q là điện tích của hạt, vvận tốc tức thời của hạt, và B là từ trường (tesla).

Khi một hạt tích điện chuyển động trong từ trường tĩnh, quỹ đạo của nó có hình xoắn ốc với trục xoắn ốc song song với hướng từ trường và vận tốc của hạt là không đổi. Bởi vì lực Lorentz luôn vuông góc với chuyển động, từ trường không sinh công lên một hạt tích điện cô lập. Nó chỉ sinh công gián tiếp thông qua điện trường phát sinh bởi từ trường biến đổi. Có người lập luận rằng lực từ sinh công lên lưỡng cực từ, hoặc lên hạt tích điện mà chuyển động bị chi phối bởi các lực khác, nhưng điều này là không đúng[20] bởi vì công trong những trường hợp này là do lực điện sinh ra bởi hạt tích điện đi lệch trong từ trường.

Lực lên dây dẫn mang dòng điện

Bài chi tiết: Lực Laplace

Lực lên dây dẫn mang dòng điện giống với lực tác động lên hạt tích điện chuyển động do dòng điện trong dây dẫn là tập hợp các hạt tích điện chuyển động. Sợi dây mang dòng điện chịu một lực khi nó đặt trong từ trường. Lực Lorentz lên dòng vĩ mô cũng được gọi là lực Laplace.Xét một dây dẫn có chiều dài ℓ, tiết diện A, và điện tích q của từng hạt trong dòng i. Nếu có một từ trường ngoài B với hướng từ trường làm một góc θ so với hướng vận tốc của các hạt trong dòng điện, thì lực tác dụng lên từng hạt q là

F = q v B sin ⁡ θ , {\displaystyle F=qvB\sin \theta ,}

do đó với N hạt mà

N = n ℓ A {\displaystyle N=n\ell A} ,

thì lực tác dụng tổng cộng lên dây dẫn là

f = F N = q v B n ℓ A sin ⁡ θ = B i ℓ sin ⁡ θ {\displaystyle f=FN=qvBn\ell A\sin \theta =Bi\ell \sin \theta } ,

với i = nqvA.

Quy tắc bàn tay phải: Ngón cái của bàn tay phải chỉ theo hướng của dòng điện quy ước và các ngón khác chỉ theo hướng của từ trường B, đối với điện tích dương thì lực tác dụng có hướng vuông góc với lòng bàn tay, trong khi đối với điện tích âm thì ngược lại.

Hướng của lực

Hướng của lực lên một hạt tích điện hay dòng điện có thể được xác định thông qua Quy tắc bàn tay phải (hình vẽ). Lực tác động lên hạt tích điện âm có chiều theo hướng ngược lại. Nếu cả vận tốc và điện tích được đảo ngược thì hướng của lực vẫn như cũ. Vì lý do này mà khi đo từ trường không thể phân biệt được trường hợp hạt tích điện dương chuyển động sang phải hay hạt tích điện âm chuyển động sang trái (cả hai trường hợp tạo ra cùng một dòng điện.) Mặt khác, khi chúng ta kết hợp từ trường với điện trường thì chúng ta có thể phân biệt được hai trường hợp này, xem hiệu ứng Hall phía dưới.

Ngoài ra cũng có cách xác định hướng của lực thông qua Quy tắc bàn tay trái.

Tài liệu tham khảo

WikiPedia: Từ_trường http://theory.uwinnipeg.ca/physics/mag/node2.html#... http://my.execpc.com/~rhoadley/magfield.htm http://www.first4magnets.com/ekmps/shops/trainer27... http://books.google.com/?id=3AFo_yxBkD0C&pg=PA169 http://books.google.com/?id=9RvNuIDh0qMC&pg=PA27 http://books.google.com/?id=AZVfuxXF2GsC&printsec=... http://books.google.com/?id=GYsphnFwUuUC&pg=PA69 http://books.google.com/?id=JStYf6WlXpgC&pg=PA381 http://books.google.com/?id=NiEDAAAAMBAJ&pg=PA96&d... http://books.google.com/?id=Ovo8AAAAIAAJ&pg=PA110